
Quality Assurance Mindset in Mendix

1. Why is quality assurance important?

2. How should quality assurance be done in a Mendix context?

3. Demo of automated testing using Selenium & TestNG

Agenda

Safeguarding quality while innovating using Mendix

Bimodal IT concept based on: “New CIO Responsibilities in a Digital World”, John Macdorman & Dave Aron (Gartner)

+

-

R
a

te
 o

f
C

h
a

n
g

e

D
e

fin
e

d
 R

e
q

u
ire

m
e

n
ts

-

+

Mode 1
Well Defined &

Low Rate of Change

Fluid &

High Rate of Change

Mode 2

Traditional
Process

Rapid
Iteration

Traditional
Development

Team

Small Cross
Functional

Team

Digital
Applications

Core
Systems

Traditional Tools
and

Infrastructure

Unified
Innovation
Platform

• Gartner has identified two modes of IT delivery:
• Mode 1: focused on stability (sequential, emphasizing safety and accuracy)
• Mode 2: focused on agility (exploratory, emphasizing agility and speed)

• Challenge: in mode 2 you want to do quality assurance at the speed of ideas. How to do it?
• But let’s first focus on why it is important to have attention for quality control in software

development.

The cost of fixing defects rises exponentially as projects progress.

Fixing defects as early as possible is critical

Source: Cost of Sofware Defects, https://agileelements.wordpress.com/2008/04/22/cost-of-software-defects/

- Finding defects later is more expensive. There is a well-known saying in the software
development industry that every consecutive development phase raises the cost of fixing a
defect by a factor 10.

- We want to find defects as early as possible to minimize costs.

Quality Assurance Mindset in Mendix

 Quality assurance vs agility.

 Feedback is at the heart of both agility and quality assurance.

 QA practices are just aligned differently to maintain agility.

Source: studentenwerk.nl

- Quality assurance and agility are at odds is a notion we hear in the marketplace.
- However, feedback is at the heart of both agility and quality assurance:

- Agile emphasizes fail fast & fail often by gathering early feedback
- While the main mechanism for quality control is also feedback on quality.

- They aspire to the same, but QA practices are just aligned differently to maintain agility:
- Timing is different: integrated in development
- Team members are engaged differently: jointly responsible
- Tooling and automation: required to keep it manageable

QA is an organization-wide concern
• It entails many domains of software delivery
• Focus on process & tooling at team level
• Activities like architecture governance & continuous

integration are vital

Source: nalashaa.com

• Quality Assurance entails many domains of software delivery: It should be a focus
point throughout your whole IT organization. Especially as you start to execute
multiple projects (in parallel).

• Today we limit our focus to process & tooling on a team level: how to behave as a
team towards quality software.

• In larger environments, activities like architecture governance & continuous
integration are vital to continuous delivery of high-quality software. These topics are
not in scope for this webinar, but need attention to ensure continued success in those
contexts.

1) Integrate testing with development

2) Targeted testing

3) End-user involvement

4) Lightweight QA practices

Principles

Integrate testing with development

Capture Design Build Test

Capture Design Build Test

Capture Design Build

Capture Design
Build

/ Test
Capture Design

Build /

Test

ReleaseRelease

Traditional
waterfall

Agile development,
Traditional testing

Integrated Agile

M
a
tu

ri
ty

Principle 1: Integrate testing with development

Release

Release

- Overarching goal is to shorten feedback loops.
- Ideal state is the lowest flow which depicts integrated testing & development:

- Testing executed simultaneously with development during the sprint
- Testing is an all-team responsibility
- All team members are familiar with Mendix.

- The first flow depicts traditional waterfall, which has the following drawbacks:
- Feedback comes too late, potentially triggering expensive rework
- Increased likeliness of friction between people who focus (predominantly) on

developing new features and those who focus more on testing.
- In the field we often see customers getting stuck in the middle. Agile development with

waterfall testing. This approach puts your agility at risk as feedback comes in too late to
handle efficiently.

 Main principle: test practices should match project risk profile.

 Use Selective testing.

 Elicit risks early and as a team effort.

 Do not test the Mendix framework itself. Mendix components are tested

for you.

Test high-risk functionality

Principle 2: Targeted testing

- Do not execute all types of tests in all projects or test all functionality: test to mitigate actual
business risks
- Elicit risks as a team effort, for example by doing risk poker in the Sprint Planning meeting. This
ensured shared understanding.
- Do not test Mendix. See the blog accompanying this webinar for detailed information why.

 Engage end users as early as possible

 Expose the app during development

 Use show-and-tell, working demo, beta

versions

 Use one-click deployment and the

feedback widget

Involve your end-users in upholding quality

Principle 3: End-user involvement

• Engage your actual end users as early as possible: we want rapid feedback.
• Use active engagement of your users (actually logging into the system) and providing you

feedback
• Mendix facilitates this rapid feedback process by offering one-click deployment & the

feedback widget

Lightweight QA practices

Principle 4: Lightweight QA practices

• Apply definition of ready

• Apply definition of done

• Apply peer reviewing

• Every team member is a tester

• Apply automated testing to high-risk areas

People & Process practices

• Design proper logging

• Ensure self-documenting models

Modeling practices

Refer to the related blog about 8 lightweight Quality Assurance Practices for a detailed
explanation.

 Automated testing can be done on multiple levels:

 Unit testing: UnitTesting Module (JUnit)

 Integration testing: SoapUI

 UI testing: Selenium

 Mendix partners provide solutions for testing as well.

Automated Test Tooling

As new functionality is added to the application, there is an increasing amount of existing
functionality which needs to be tested. At some point automation of this regression testing is
the only way to keep the release speed of your team on par.

